End-to-end simulations to optimize imaging spectroscopy mission requirements for seven scientific applications

Type Article
Date 2024-04
Language English
Author(s) Briottet X.ORCID1, Adeline K.1, Bajjouk Touria2, Carrère V.ORCID3, Chami M.ORCID4, Constans Y.1, Derimian Y.5, Dupiau A.1, 6, Dumont Marie7, Doz S.1, Fabre S.1, Foucher P.Y.1, Herbin H.5, Jacquemoud S.6, Lang M.ORCID8, Le Bris A.9, Litvinov P.16, Loyer S.10, r Marion11, Minghelli A.12, Miraglio T.1, Sheeren D.8, Szymanski B.13, Romand F.15, Desjardins C.14, Rodat D.14, Cheul B.14
Affiliation(s) 1 : Université de Toulouse, ONERA DOTA, Toulouse, France
2 : Ifremer, DYNECO, LEBCO, Plouzané, France
3 : Nantes Université, Laboratoire de Planétologie et Géosciences, UMR 6112, Nantes, France
4 : Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Sorbonne Université, Laboratoire Lagrange, Nice, France
5 : Université Lille, CNRS, UMR 8518, LOA, France
6 : Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
7 : Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige, Grenoble, France
8 : Université de Toulouse, INRAE, UMR DYNAFOR; , Castanet-Tolosane, France
9 : Université Gustave Eiffel, LASTIG, ENSG, IGN, Saint-Mandé, France
10 : SHOM, Brest, France
11 : CEA/DAM/DIF, Arpajon, France
12 : Université de Toulon, CNRS, SeaTech, LIS laboratory, UMR 7020, Toulon, France
13 : DGA, Paris, France
14 : CNES, Toulouse, France
15 : ACRI-ST, Sophia-Antipolis, France
16 : GRASP SAS, Villeneuve d’Ascq, France
Source ISPRS Open Journal of Photogrammetry and Remote Sensing (2667-3932) (Elsevier BV), 2024-04 , Vol. 12 , P. 100060 (20p.)
DOI 10.1016/j.ophoto.2024.100060
Keyword(s) imaging spectroscopy, signal-to-noise ratio, spectral sampling, image quality, mineralogy, soil moisture content, tree species, leaf functional traits, bottom classification, shallow water, bathymetry, seabed, urban land cover, plume, aerosols, methane, cryosphere, water vapor, aerosols
Abstract

CNES is currently carrying out a Phase A study to assess the feasibility of a future hyperspectral imaging sensor (10 m spatial resolution) combined with a panchromatic camera (2.5 m spatial resolution). This mission focuses on both high spatial and spectral resolution requirements, as inherited from previous French studies such as HYPEX, HYPXIM, and BIODIVERSITY. To meet user requirements, cost, and instrument compactness constraints, CNES asked the French hyperspectral Mission Advisory Group (MAG), representing a broad French scientific community, to provide recommendations on spectral sampling, particularly in the Short Wave InfraRed (SWIR) for various applications.

This paper presents the tests carried out with the aim of defining the optimal spectral sampling and spectral resolution in the SWIR domain for quantitative estimation of physical variables and classification purposes. The targeted applications are geosciences (mineralogy, soil moisture content), forestry (tree species classification, leaf functional traits), coastal and inland waters (bathymetry, water column, bottom classification in shallow water, coastal habitat classification), urban areas (land cover), industrial plumes (aerosols, methane and carbon dioxide), cryosphere (specific surface area, equivalent black carbon concentration), and atmosphere (water vapor, carbon dioxide and aerosols). All the products simulated in this exercise used the same CNES end-to-end processing chain, with realistic instrument parameters, enabling easy comparison between applications. 648 simulations were carried out with different spectral strategies, radiometric calibration performances and signal-to-noise Ratios (SNR): 24 instrument configurations × 25 datasets (22 images + 3 spectral libraries).

The results show that spectral sampling up to 20 nm in the SWIR range is sufficient for most applications. However, 10 nm spectral sampling is recommended for applications based on specific absorption bands such as mineralogy, industrial plumes or atmospheric gases. In addition, a slight performance loss is generally observed when radiometric calibration accuracy decreases, with a few exceptions in bathymetry and in the cryosphere for which the observed performance is severely degraded. Finally, most applications can be achieved with a realistic SNR, with the exception of bathymetry, shallow water classification, as well as carbon dioxide and methane estimation, which require the optimistic SNR level tested. On the basis of these results, CNES is currently evaluating the best compromise for designing the future hyperspectral sensor to meet the objectives of priority applications.

Licence CC-BY
Full Text
File Pages Size Access
Publisher's official version 63 15 MB Open access
Top of the page

How to cite 

Briottet X., Adeline K., Bajjouk Touria, Carrère V., Chami M., Constans Y., Derimian Y., Dupiau A., Dumont Marie, Doz S., Fabre S., Foucher P.Y., Herbin H., Jacquemoud S., Lang M., Le Bris A., Litvinov P., Loyer S., r Marion, Minghelli A., Miraglio T., Sheeren D., Szymanski B., Romand F., Desjardins C., Rodat D., Cheul B. (2024). End-to-end simulations to optimize imaging spectroscopy mission requirements for seven scientific applications. ISPRS Open Journal of Photogrammetry and Remote Sensing, 12, 100060 (20p.). Publisher's official version : https://doi.org/10.1016/j.ophoto.2024.100060 , Open Access version : https://archimer.ifremer.fr/doc/00881/99268/