Physical processes and biological productivity in the upwelling regions of the tropical Atlantic

Type Article
Date 2023-05
Language English
Author(s) Brandt PeterORCID1, 2, Alory GaëlORCID3, Awo Founi MesminORCID4, Dengler MarcusORCID1, Djakouré Sandrine5, Imbol Koungue Rodrigue Anicet1, Jouanno JulienORCID3, Körner MareikeORCID1, Roch MarisaORCID1, Rouault Mathieu4
Affiliation(s) 1 : GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
2 : Faculty of Mathematics and Natural Sciences, Kiel University, Kiel, Germany
3 : LEGOS, CNES/CNRS/IRD/UPS, Toulouse, France
4 : Nansen-Tutu Centre for Marine Environmental Research, Department of Oceanography, University of Cape Town, Cape Town, South Africa
5 : LASMES, UFR SSMT, Felix Houphouët-Boigny University, Abidjan, Côte d’Ivoire
Source Ocean Science (1812-0784) (Copernicus GmbH), 2023-05 , Vol. 19 , N. 3 , P. 581-601
DOI 10.5194/os-19-581-2023
WOS© Times Cited 7
Abstract

In this paper, we review observational and modelling results on the upwelling in the tropical Atlantic between 10∘ N and 20∘ S. We focus on the physical processes that drive the seasonal variability of surface cooling and the upward nutrient flux required to explain the seasonality of biological productivity. We separately consider the equatorial upwelling system, the coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system. All three tropical Atlantic upwelling systems have in common a strong seasonal cycle, with peak biological productivity during boreal summer. However, the physical processes driving the upwelling vary between the three systems. For the equatorial regime, we discuss the wind forcing of upwelling velocity and turbulent mixing, as well as the underlying dynamics responsible for thermocline movements and current structure. The coastal upwelling system in the Gulf of Guinea is located along its northern boundary and is driven by both local and remote forcing. Particular emphasis is placed on the Guinea Current, its separation from the coast and the shape of the coastline. For the tropical Angolan upwelling, we show that this system is not driven by local winds but instead results from the combined effect of coastally trapped waves, surface heat and freshwater fluxes, and turbulent mixing. Finally, we review recent changes in the upwelling systems associated with climate variability and global warming and address possible responses of upwelling systems in future scenarios.

Licence CC-BY
Full Text
File Pages Size Access
Publisher's official version 21 12 MB Open access
Preprint 27 10 MB Open access
Top of the page

How to cite 

Brandt Peter, Alory Gaël, Awo Founi Mesmin, Dengler Marcus, Djakouré Sandrine, Imbol Koungue Rodrigue Anicet, Jouanno Julien, Körner Mareike, Roch Marisa, Rouault Mathieu (2023). Physical processes and biological productivity in the upwelling regions of the tropical Atlantic. Ocean Science, 19(3), 581-601. Publisher's official version : https://doi.org/10.5194/os-19-581-2023 , Open Access version : https://archimer.ifremer.fr/doc/00882/99408/