Development and validation of a lifting‐line code associated with the vortex particle method software Dorothy

Type Article
Acceptance Date 2024-04-03 IN PRESS
Language English
Author(s) Dufour M.‐a.ORCID1, 2, Pinon G.ORCID1, Rivoalen E.1, 3, Blondel F.ORCID4, Germain GregoryORCID2
Affiliation(s) 1 : Laboratoire Ondes et Milieux Complexes (LOMC) ‐ Normandie Univ, UNIHAVRE, CNRS Le Havre, France
2 : Laboratoire d'Hydrodynamique Marine (LHyMar), IFREMER, Centre Manche Mer du Nord Boulogne‐sur‐Mer, France
3 : Laboratoire de Mécanique de Normandie (LMN) ‐ Normandie Univ, INSA ROUEN, LMN Rouen, France
4 : IFP Energies Nouvelles Rueil‐Malmaison, France
Source Wind Energy (1095-4244) (Wiley) In Press
DOI 10.1002/we.2905
Keyword(s) CFD, lifting-line, vortex particle method, wake interaction, wind turbine
Abstract

This paper presents a lifting‐line implementation in the framework of a Lagrangian vortex particle method (LL‐VP). The novelty of the present implementation lies in the fluid particles properties definition and in the particles shedding process. In spite of mimicking a panel method, the LL‐VP needs some peculiar treatments described in the paper. The present implementation converges rapidly and efficiently during the shedding sub‐iteration process. This LL‐VP method shows good accuracy, even with moderate numbers of sections. Compared to its panel or vortex filaments counterparts, more frequently encountered in the literature, the present implementation inherently accounts for the diffusion term of the Navier‐Stokes equations, possibly with a turbulent viscosity model. Additionally, the present implementation can also account for more complex onset flows: upstream ambient turbulence and upstream turbine wakes. After validation on an analytical elliptic wing configuration, the model is tested on the Mexnext‐III wind turbine application, for three reduced velocities. Accurate results are obtained both on the analytical elliptic wing and on the New MEXICO rotor cases in comparison with other similar numerical models. A focus is made on the Mexnext‐III wake analysis. The numerical wake obtained with the present LL‐VP is close to other numerical and experimental results. Finally, a last configuration with three tidal turbines in interaction is considered based on an experimental campaign carried out at the IFREMER wave and current flume tank. Enhanced turbine‐wake interactions are highlighted, with favourable comparisons with the experiment. Hence, such turbine interactions in a farm are accessible with this LL‐VP implementation, be it wind or tidal energy field.

Licence CC-BY-NC
Full Text
File Pages Size Access
Publisher's official version IN PRESS 34 5 MB Open access
Top of the page