The El Niño Southern Oscillation (ENSO) recharge oscillator conceptual model : achievements and future prospects

The Recharge Oscillator (RO) is a simple mathematical model of the El Niño Southern Oscillation (ENSO). In its original form, it is based on two ordinary differential equations that describe the evolution of equatorial Pacific sea surface temperature and oceanic heat content. These equations make use of physical principles that operate in nature: (i) the air-sea interaction loop known as the Bjerknes feedback, (ii) a delayed oceanic feedback arising from the slow oceanic response to near-equatorial winds, (iii) state-dependent stochastic forcing from intraseasonal wind variations known as westerly wind bursts (WWBs), and (iv) nonlinearities such as those related to deep atmospheric convection and oceanic advection. These elements can be combined in different levels of RO complexity. The RO reproduces ENSO key properties in observations and climate models: its amplitude, dominant timescale, seasonality, and warm/cold phases amplitude asymmetry. We discuss the RO in the context of timely research questions. First, the RO can be extended to account for ENSO pattern diversity (with events that either peak in the central or eastern Pacific). Second, the core RO hypothesis that ENSO is governed by tropical Pacific dynamics is discussed from the perspective of influences from other basins. Finally, we discuss the RO relevance for studying ENSO response to climate change, and underline that accounting for ENSO diversity, nonlinearities, and better links of RO parameters to the long term mean state are important research avenues. We end by proposing important RO-based research problems.

Keyword(s)

climate change, enso (el niño southern oscillation), literature review, perspective, ro (recharge oscillator), simple mathematical (conceptuel) model

Full Text

FilePagesSizeAccess
Preprint
-6 Mo
How to cite
Vialard Jérôme, Jin Fei Fei, McPhaden Michael J., Fedorov Alexey, Cai Wenju, An Soon-Il, Dommenget Dietmar, Fang Xianghui, Stuecker Malte Fabian, Wang Chunzai, Wittenberg Andrew T., Zhao Sen, Liu Fangyu, Kim Soong-Ki, Planton Yann Yvon, Geng Tao, Lengaigne Matthieu, Capotondi Antonietta, Chen Nan, Geng Licheng, Hu Shineng, Izumo Takeshi, Kug Jong-Seong, Luo Jing-Jia, McGregor Shayne, Pagli Bastien, Priya Priyamvada, Stevenson Samantha, Thual Sulian (2024). The El Niño Southern Oscillation (ENSO) recharge oscillator conceptual model : achievements and future prospects. ESS Open Archive / Submitted to Reviews of Geophysics. INPRESS. https://doi.org/10.22541/essoar.172191630.08428230/v1, https://archimer.ifremer.fr/doc/00933/104441/

Copy this text