The potential of the maximum cross-correlation technique to estimate surface currents from thermal AVHRR global area coverage data

Having already shown its potential of deriving the vector fields representing the ocean-surface advection from sequential 1.1-km-resolution local area coverage (LAC) Advanced Very High Resolution Radiometer (AVHRR) images, the maximum cross-correlation (MCC) technique here is applied to four 4.4-km-resolution global area coverage (GAC) AVHRR images. The resulting three vector fields are compared to the vector fields obtained from the LAC imagery corresponding to the same satellite passages. To quantify the reduction in accuracy inevitable when applying the method to the lower resolution imagery, the LAC vector fields were assumed to be error free. The deviation of the GAC vectors from the LAC vectors is expressed as percentage errors of the signal variance of meridional u and zonal v velocity components, and they are 16%/30%, respectively, for the best case and 62%/117% and 92%/111% for the other two cases. These results indicate that, in its present state, the GAC data do not allow the MCC technique to extract reliable current-vector information from it.

Keyword(s)

Remote sensing, Marine technology, Infrared imaging, Image motion

Full Text

FilePagesSizeAccess
1947.pdf
4173 Ko
How to cite
Dransfeld Steffen, Larnicol Gilles, Le Traon Pierre-Yves (2006). The potential of the maximum cross-correlation technique to estimate surface currents from thermal AVHRR global area coverage data. IEEE Geoscience and Remote Sensing Letters. 3 (4). 508-511. https://doi.org/10.1109/LGRS.2006.878439, https://archimer.ifremer.fr/doc/00000/2319/

Copy this text