Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field

We study the dispersion of wind-induced near-inertial oscillations (NIOs) in a fully turbulent baroclinic mesoscale eddy field characterized by a continuous wavenumber spectrum. The influence of the eddy field on the horizontal dispersion of the different NIO modes is analyzed using a vertical normal mode expansion. Previous studies have identified two dispersion regimes: trapping and strong dispersion. We examine the modes in physical and spectral space to assess which regime prevails,Numerical and analytical results show the prevalence of a trapping regime. For each NIO mode, there exists a critical horizontal wavenumber. k(c), that separates large-scale NIO structures, where trapping dominates, from the much less energetic small-scale NIO structures, where strong dispersion dominates. The maximum efficiency of dispersion for scales close to k(c) concentrates NIO kinetic energy at these scales.The wavenumber k(c) results from a balance between refraction and dispersion. This balance first occurs at the highest wavenumber. Thereafter. k(c), which has dimensional expression k(c)(2) = pi/(ftR(m)(2)), decreases with time at a rate inversely proportional to the radius of deformation, R-m, of the baroclinic NIO mode considered, As a consequence, at any given time, higher NIO baroclinic mode energy can mostly be found in small-scale negative vorticity structures, such as filaments near sharp vorticity fronts, whereas lower NIO mode energy is concentrated within the core of mesoscale anticyclonic vortices. For large times, a saturation mechanism stops the time-evolution of k(c) at a value close to the peak of the kinetic energy spectrum of the QG flow field.

Keyword(s)

Refraction, Horizontal dispersion, Wind induced oscillations, Eddy field

Full Text

FilePagesSizeAccess
462.pdf
27865 Ko
How to cite
Klein Patrice, Smith Stefan Llewellyn (2001). Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. Journal of Marine Research. 59 (5). 697-723. https://archimer.ifremer.fr/doc/00000/799/

Copy this text