Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field

Type Article
Date 2001-09
Language English
Author(s) Klein Patrice, Smith Stefan Llewellyn
Affiliation(s) IFREMER, Ctr Brest, Lab Phys Oceans, F-29280 Plouzane, France.
Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
Source Journal of Marine Research (0022-2402) (Yale University), 2001-09 , Vol. 59 , N. 5 , P. 697-723
WOS© Times Cited 20
Keyword(s) Refraction, Horizontal dispersion, Wind induced oscillations, Eddy field
Abstract We study the dispersion of wind-induced near-inertial oscillations (NIOs) in a fully turbulent baroclinic mesoscale eddy field characterized by a continuous wavenumber spectrum. The influence of the eddy field on the horizontal dispersion of the different NIO modes is analyzed using a vertical normal mode expansion. Previous studies have identified two dispersion regimes: trapping and strong dispersion. We examine the modes in physical and spectral space to assess which regime prevails,Numerical and analytical results show the prevalence of a trapping regime. For each NIO mode, there exists a critical horizontal wavenumber. k(c), that separates large-scale NIO structures, where trapping dominates, from the much less energetic small-scale NIO structures, where strong dispersion dominates. The maximum efficiency of dispersion for scales close to k(c) concentrates NIO kinetic energy at these scales.The wavenumber k(c) results from a balance between refraction and dispersion. This balance first occurs at the highest wavenumber. Thereafter. k(c), which has dimensional expression k(c)(2) = pi/(ftR(m)(2)), decreases with time at a rate inversely proportional to the radius of deformation, R-m, of the baroclinic NIO mode considered, As a consequence, at any given time, higher NIO baroclinic mode energy can mostly be found in small-scale negative vorticity structures, such as filaments near sharp vorticity fronts, whereas lower NIO mode energy is concentrated within the core of mesoscale anticyclonic vortices. For large times, a saturation mechanism stops the time-evolution of k(c) at a value close to the peak of the kinetic energy spectrum of the QG flow field.
Full Text
File Pages Size Access
publication-799.pdf 27 865 KB Open access
Top of the page

How to cite 

Klein Patrice, Smith Stefan Llewellyn (2001). Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. Journal of Marine Research, 59(5), 697-723. Open Access version : https://archimer.ifremer.fr/doc/00000/799/