Development of a model for flexural rigidity of fishing net with a spring mass approach and its inverse identification by metaheuristic parametric optimization.

The assessment of mesh resistance to opening is a key factor when coming to fishing gear design to study or optimize the fishing selectivity process. Different authors proposed methodologies to achieve twine flexural rigidity identification and mesh opening angle at rest. Their experimental protocols could rely on complex installations and instrumentation, and identification needs dedicated models or software with possible important set up time. Sometimes, different flexural rigidity and rest angle values for a given netting type were proposed depending on identification or experimental conditions, leading to difficulties to choose a value for implementation in netting structures simulation software. The new methodology proposed in this article is based on a simplified experimental protocol taking plasticity into account and an identification method derived from an end user dedicated software, to determine mechanical and dimensional characteristics of common netting materials. Identified flexural rigidity and rest angle values fall inside the interval provided by authors using similar methods. Identified parameters have been used to predict the geometry of two T90 netting cylinders with errors lower than 3%.

Keyword(s)

Fishing net mechanics, Twine flexural rigidity, Numerical simulation, Selectivity, Fishing

Full Text

FilePagesSizeAccess
Publisher's official version
132 Mo
Multimedia component 1.
8532 Ko
Author's final draft
301 Mo
How to cite
Vincent Benoit, Di Cesare Noëlie, Simon Julien (2020). Development of a model for flexural rigidity of fishing net with a spring mass approach and its inverse identification by metaheuristic parametric optimization. Ocean Engineering. 203. 107166 (13p.). https://doi.org/10.1016/j.oceaneng.2020.107166, https://archimer.ifremer.fr/doc/00613/72541/

Copy this text