The Seagrass Methylome Is Associated With Variation in Photosynthetic Performance Among Clonal Shoots

Type Article
Date 2020-09
Language English
Author(s) Jueterbock Alexander1, 2, Boström Christoffer3, Coyer James A.2, 4, Olsen Jeanine L.5, Kopp Martina2, Dhanasiri Anusha K. S.2, Smolina Irina2, Arnaud-Haond SophieORCID6, Van De Peer Yves7, 8, 9, Hoarau Galice2
Affiliation(s) 1 : Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
2 : Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
3 : Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
4 : Shoals Marine Laboratory, University of New Hampshire, Durham, NH, United States
5 : Ecological Genetics-Genomics Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
6 : UMR MARBEC, Université de Montpellier, Ifremer, IRD, CNRS, Sète, France
7 : Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
8 : Bioinformatics and Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
9 : Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
Source Frontiers In Plant Science (1664-462X) (Frontiers Media SA), 2020-09 , Vol. 11 , N. 571646 , P. 19p.
DOI 10.3389/fpls.2020.571646
WOS© Times Cited 18
Keyword(s) DNA methylation, ecological epigenetics, clonality, heat stress, seagrass, Zostera marina(eelgrass)

Evolutionary theory predicts that clonal organisms are more susceptible to extinction than sexually reproducing organisms, due to low genetic variation and slow rates of evolution. In agreement, conservation management considers genetic variation as the ultimate measure of a population’s ability to survive over time. However, clonal plants are among the oldest living organisms on our planet. Here, we test the hypothesis that clonal seagrass meadows display epigenetic variation that complements genetic variation as a source of phenotypic variation. In a clonal meadow of the seagrass Zostera marina, we characterized DNA methylation among 42 shoots. We also sequenced the whole genome of 10 shoots to correlate methylation patterns with photosynthetic performance under exposure to and recovery from 27°C, while controlling for somatic mutations. Here, we show for the first time that clonal seagrass shoots display DNA methylation variation that is independent from underlying genetic variation, and associated with variation in photosynthetic performance under experimental conditions. It remains unknown to what degree this association could be influenced by epigenetic responses to transplantation-related stress, given that the methylomes showed a strong shift under acclimation to laboratory conditions. The lack of untreated control samples in the heat stress experiment did not allow us to distinguish methylome shifts induced by acclimation from such induced by heat stress. Notwithstanding, the co-variation in DNA methylation and photosynthetic performance may be linked via gene expression because methylation patterns varied in functionally relevant genes involved in photosynthesis, and in the repair and prevention of heat-induced protein damage. While genotypic diversity has been shown to enhance stress resilience in seagrass meadows, we suggest that epigenetic variation plays a similar role in meadows dominated by a single genotype. Consequently, conservation management of clonal plants should consider epigenetic variation as indicator of resilience and stability.

Full Text
File Pages Size Access
Publisher's official version 19 2 MB Open access
Data Sheet 1 7 524 KB Open access
Data Sheet 2 1 MB Open access
Data Sheet 3 126 KB Open access
Data Sheet 4 435 bytes Open access
Table 1 5 KB Open access
Table 2 5 KB Open access
Table 3 9 KB Open access
Table 4 5 KB Open access
Table 5 23 KB Open access
Table 6 8 KB Open access
Table 7 5 KB Open access
Table 8 6 KB Open access
Table 9 45 KB Open access
Table 10 7 KB Open access
Table 11 6 KB Open access
Table 12 9 KB Open access
Table 13 22 KB Open access
Table 14 6 KB Open access
Top of the page

How to cite 

Jueterbock Alexander, Boström Christoffer, Coyer James A., Olsen Jeanine L., Kopp Martina, Dhanasiri Anusha K. S., Smolina Irina, Arnaud-Haond Sophie, Van De Peer Yves, Hoarau Galice (2020). The Seagrass Methylome Is Associated With Variation in Photosynthetic Performance Among Clonal Shoots. Frontiers In Plant Science, 11(571646), 19p. Publisher's official version : , Open Access version :