Decadal fCO(2) trends in global ocean margins and adjacent boundary current-influenced areas

Type Article
Date 2017-09
Language English
Author(s) Wang Hongjie1, Hu XinpingORCID1, Cai Wei-JunORCID2, Sterba-Boatwright Blair3
Affiliation(s) 1 : Texas A&M Univ Corpus Christi, Dept Phys & Environm Sci, Corpus Christi, TX 78412 USA.
2 : Univ Delaware, Sch Marine Sci & Policy, Newark, DE USA.
3 : Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX USA.
Source Geophysical Research Letters (0094-8276) (Amer Geophysical Union), 2017-09 , Vol. 44 , N. 17 , P. 8962-8970
DOI 10.1002/2017GL074724
WOS© Times Cited 17

Determination of the rate of change of sea surface CO2 fugacity (fCO(2)) is important, as the fCO(2) gradient between the atmosphere and the ocean determines the direction of CO2 flux and hence the fate of this greenhouse gas. Using a newly available, community-based global CO2 database (Surface Ocean CO2 Atlas Version 3 coastal data set) and a newly developed statistical method, we report that the global ocean margins (within 400km offshore, 30 degrees S-70 degrees N) fCO(2) temporal trends on decadal time scales (1.931.59atmyr(-1)) closely follow the atmospheric fCO(2) increase rate (1.900.06atmyr(-1)) in the Northern Hemisphere but are lower (1.350.55atmyr(-1)) in the Southern Hemisphere, reflecting dominant atmospheric forcing in conjunction with different warming rates in the two hemispheres. In addition to the atmospheric fCO(2) forcing, a direct warming effect contributes more to fCO(2) increase in the western boundary current-influenced areas, while intensified upwelling contributes more to fCO(2) increase in eastern boundary current-influenced areas.

Full Text
File Pages Size Access
Publisher's official version 9 1 MB Open access
Supporting Information S1 2 MB Open access
Software S1 13 KB Open access
Top of the page