Trade-offs between bycatch and target catches in static versus dynamic fishery closures

Type Article
Date 2022-01
Language English
Author(s) Pons Maite1, Watson Jordan T.2, Ovando DanielORCID1, Andraka SandraORCID3, Brodie Stephanie4, 5, Domingo AndrésORCID6, Fitchett Mark7, Forselledo Rodrigo6, Hall MartinORCID8, Hazen Elliott L.ORCID4, 5, Jannot Jason E.ORCID9, Herrera MiguelORCID10, Jiménez SebastiánORCID6, Kaplan DavidORCID11, 12, Kerwath SvenORCID13, 14, Lopez JonORCID8, McVeigh Jon9, Pacheco LucasORCID3, Rendon Liliana3, Richerson Kate9, Sant’ana RodrigoORCID15, Sharma RishiORCID16, Smith James A.ORCID4, 17, Somers Kayleigh9, Hilborn RayORCID1
Affiliation(s) 1 : School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020; USA
2 : Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, AK 99801; USA
3 : EcoPacific Plus Consulting, San José 10111, Costa Rica
4 : Institute of Marine Sciences, University of California, Santa Cruz, CA 93950, USA
5 : Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA 93950, USA
6 : Laboratorio de Recursos Pelágicos, Dirección Nacional de Recursos Acuáticos, Montevideo 11200, Uruguay
7 : Western Pacific Regional Fishery Management Council, Honolulu, HI 96813, USA
8 : Inter-American Tropical Tuna Commission, Bycatch Program, San Diego, CA 92037, USA
9 : Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98115; USA
10 : Producers’ Organization of Large Tuna Freezers, Madrid 28001, Spain
11 : Marine Biodiversity Exploitation and Conservation (MARBEC), Université Montpellier, CNRS, L'Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), IRD, Sète 34203, France
12 : Institut de Recherche Pour le Développement (IRD), Sète 34203, France;
13 : Department of Biological Sciences, University of Cape Town, Cape Town 7700, South Africa
14 : Department of Forestry, Fisheries and the Environment, Cape Town 7700, South Africa
15 : Laboratório de Estudos Marinhos Aplicados, Escola do Mar, Ciência e Tecnologia, Universidade do Vale do Itajaí, Itajaí, SC 3109, Brazil;
16 : Marine and Inland Fisheries Division, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
17 : Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92104, USA
Source Proceedings Of The National Academy Of Sciences Of The United States Of America (0027-8424) (Proceedings of the National Academy of Sciences), 2022-01 , Vol. 119 , N. 4 , P. e2114508119 (11p.)
DOI 10.1073/pnas.2114508119
WOS© Times Cited 33
Keyword(s) static and dynamic closures, bycatch mitigation, fisheries management, marine protected areas
Abstract

While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species. We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.

Full Text
File Pages Size Access
Publisher's official version 11 3 MB Open access
Appendix 01 35 3 MB Open access
Top of the page

How to cite 

Pons Maite, Watson Jordan T., Ovando Daniel, Andraka Sandra, Brodie Stephanie, Domingo Andrés, Fitchett Mark, Forselledo Rodrigo, Hall Martin, Hazen Elliott L., Jannot Jason E., Herrera Miguel, Jiménez Sebastián, Kaplan David, Kerwath Sven, Lopez Jon, McVeigh Jon, Pacheco Lucas, Rendon Liliana, Richerson Kate, Sant’ana Rodrigo, Sharma Rishi, Smith James A., Somers Kayleigh, Hilborn Ray (2022). Trade-offs between bycatch and target catches in static versus dynamic fishery closures. Proceedings Of The National Academy Of Sciences Of The United States Of America, 119(4), e2114508119 (11p.). Publisher's official version : https://doi.org/10.1073/pnas.2114508119 , Open Access version : https://archimer.ifremer.fr/doc/00748/86006/