Gravity complexes as a focus of seafloor fluid seepage: the Rio Grande Cone, SE Brazil

Type Article
Date 2023-03
Language English
Author(s) Ketzer M.1, Praeg D.2, Augustin A. H.3, Rodrigues L. F.4, Steiger A. K.3, Rahmati-Abkenar M.1, Viana A. R.5, Miller D. J.5, Malinverno A.6, Dickens G. R.7, Cupertino J. A.3
Affiliation(s) 1 : Department of Biology and Environmental Science, Linnaeus University, 391 81, Kalmar, Sweden
2 : Géoazur, 250 Rue Albert Einstein, 06560, Valbonne, France
3 : Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, 91619-900, Brazil
4 : Universidade Federal do Rio Grande, Rio Grande, 96203-900, Brazil
5 : Petrobras Petroleo Brasileiro SA, Rio de Janeiro, 20031-170, Brazil
6 : Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA
7 : Trinity College Dublin, Dublin 2, Ireland
Source Scientific Reports (2045-2322) (Springer Science and Business Media LLC), 2023-03 , Vol. 13 , N. 1 , P. 4590 (12p.)
DOI 10.1038/s41598-023-31815-1
WOS© Times Cited 2
Abstract

Seafloor methane emissions can affect Earth’s climate and ocean chemistry. Vast quantities of methane formed by microbial decomposition of organic matter are locked within gas hydrate and free gas on continental slopes, particularly in large areas with high sediment accumulations such as deep-sea fans. The release of methane in slope environments has frequently been associated with dissociation of gas hydrates near the edge of the gas hydrate stability zone on the upper slope, with discharges in greater water depths less understood. Here we show, using data from the Rio Grande Cone (western South Atlantic), that the intrinsic, gravity-induced downslope collapse of thick slope sediment accumulations creates structures that serve as pathways for gas migration, unlocking methane and causing seafloor emissions via giant gas flares in the water column. The observed emissions in the study region (up to 310 Mg year−1) are three times greater than estimates for the entire US North Atlantic margin and reveal the importance of collapsing sediment accumulations for ocean carbon cycling. Similar outgassing systems on the Amazon and Niger fans suggest that gravity tectonics on passive margins is a common yet overlooked mechanism driving massive seafloor methane emissions in sediment-laden continental slopes.

Full Text
File Pages Size Access
Publisher's official version 12 3 MB Open access
Supplementary Legends 1 41 KB Open access
Supplementary Information 1 92 KB Open access
Supplementary Information 1. 10 KB Open access
Supplementary Information 2. 15 KB Open access
Supplementary Information 3. 729 KB Open access
Top of the page

How to cite 

Ketzer M., Praeg D., Augustin A. H., Rodrigues L. F., Steiger A. K., Rahmati-Abkenar M., Viana A. R., Miller D. J., Malinverno A., Dickens G. R., Cupertino J. A. (2023). Gravity complexes as a focus of seafloor fluid seepage: the Rio Grande Cone, SE Brazil. Scientific Reports, 13(1), 4590 (12p.). Publisher's official version : https://doi.org/10.1038/s41598-023-31815-1 , Open Access version : https://archimer.ifremer.fr/doc/00829/94110/