The carrying capacity of the seas and oceans for future sustainable food production: Current scientific knowledge gaps

Type Article
Date 2023-07
Language English
Author(s) Van Der Meer JaapORCID1, 2, Callier MyriamORCID3, Fabi Gianna4, Van Hoof Luc1, Nielsen J. Rasmus5, Raicevich Saša6
Affiliation(s) 1 : Wageningen Marine Research Yerseke ,The Netherlands
2 : Aquaculture and Fisheries Group Wageningen University and Research Wageningen, The Netherlands
3 : Joint Research Unit (UMR) Marine Biodiversity Exploitation and Conservation (MARBEC) Paris, France
4 : Institute for Marine Biological Resources and Biotechnologies (IRBIM) National Research Council (CNR) Rome ,Italy
5 : National Institute of Aquatic Resources Technical University of Denmark (DTU Aqua) Copenhagen, Denmark
6 : Italian Institute for Environmental Protection and Research (ISPRA) Rome ,Italy
Source Food And Energy Security (2048-3694) (Wiley), 2023-07 , Vol. 12 , N. 4 , P. e464 (28p.)
DOI 10.1002/fes3.464
WOS© Times Cited 3
Keyword(s) ecological engineering, ecosystem manipulation, ecosystem restoration, low-trophic aquaculture, mesopelagic fisheries, zooplankton fisheries

The expected increase in global food demand, as a consequence of a rising and wealthier world population, and an awareness of the limits and drawbacks of modern agriculture, has resulted in a growing attention to the potential of the seas and oceans to produce more food. The capture production of presently exploited marine fish stocks and other species has more or less reached its maximum and can only be slightly improved by better management. This leaves four alternative options open to increase marine food production: (1) manipulating the entire food web structure via removal of high trophic level species to allow an increasing exploitation of low trophic level species, (2) harvesting so far unexploited stocks, such as various fish species from the mesopelagic zone of the ocean or the larger zooplankton species from polar regions, (3) low-trophic mariculture of seaweeds and herbivorous animals, and (4) restoration of impoverished coastal ecosystems or artificially increasing productivity by ecological engineering. In this paper, we discuss these four options and pay attention to missing scientific knowledge needed to assess their sustainability. To assess sustainability, it is a prerequisite to establish robust definitions and assessments of the biological carrying capacity of the systems, but it is also necessary to evaluate broader socio-economic and governance sustainability.

Licence CC-BY
Full Text
File Pages Size Access
Publisher's official version 28 1 MB Open access
Appendix S1. 4 174 KB Open access
Top of the page

How to cite 

Van Der Meer Jaap, Callier Myriam, Fabi Gianna, Van Hoof Luc, Nielsen J. Rasmus, Raicevich Saša (2023). The carrying capacity of the seas and oceans for future sustainable food production: Current scientific knowledge gaps. Food And Energy Security, 12(4), e464 (28p.). Publisher's official version : , Open Access version :