Ubiquity of inverted ’gelatinous’ ecosystem pyramids in the global ocean

Type Article
Acceptance Date 2024-02-12 IN PRESS
Language English
Author(s) Lombard FabienORCID1, 2, 3, Guidi LionelORCID1, 2, Brandão Manoela C.ORCID1, 2, Coelho Luis PedroORCID4, 5, 6, Colin SébastienORCID7, Dolan John RichardORCID1, Elineau Amanda1, Gasol Josep MORCID8, Grondin Pierre Luc9, Henry NicolasORCID2, 10, Ibarbalz Federico MORCID2, 11, Jalabert Laetitia1, Loreau MichelORCID12, Martini SéverineORCID1, 13, Mériguet ZoéORCID1, Picheral MarcORCID1, Pierella Karlusich Juan JoséORCID2, 11, Pepperkok RainerORCID14, 15, Romagnan Jean-Baptiste1, 16, Zinger LucieORCID2, 11, Stemmann LarsORCID1, Acinas Silvia GORCID8, Lee Karp-BossORCID17, Boss EmmanuelORCID17, Sullivan Matthew B.ORCID18, de Vargas ColombanORCID2, 19, Bowler ChrisORCID2, 11, Karsenti EricORCID2, 11, 20, Gorsky GabrielORCID1, 2
Affiliation(s) 1 : Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefanche, LOV, F-06230 Villefranche- sur-mer, France
2 : Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
3 : Institut Universitaire de France, 75005 Paris, France
4 : Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
5 : Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
6 : Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
7 : Max Planck Institute for Developmental Biology, Tübingen, Germany
8 : Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
9 : Département de Biologie, Takuvik International Research Laboratory (IRL-3376, CNRS (France) & ULaval (Canada), Université Laval, Québec, Canada
10 : CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
11 : Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, France
12 : Theoretical and Experimental Ecology Station, CNRS, 09200 Moulis, France
13 : Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM, Marseille, France
14 : Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
15 : Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
16 : Ifremer, Centre Atlantique, Unité Ecologie et Modèles Pour l’Halieutique, 44311, Nantes, France
17 : School of Marine Sciences, University of Maine, Orono, ME 04469, USA
18 : Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
19 : Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, 29680 Roscoff, France
20 : Directors’ Research European Molecular Biology Laboratory Meyerhofstr. 1 69117 Heidelberg, Germany
Source bioRxiv (Cold Spring Harbor Laboratory) In Press
DOI 10.1101/2024.02.09.579612
Abstract

Summary paragraph Plankton are essential in marine ecosystems. However, our knowledge of overall community structure is sparse due to inconsistent sampling across their very large organismal size range. Here we use diverse imaging methods to establish complete plankton inventories of organisms spanning five orders of magnitude in size. Plankton community size and trophic structure variation validate a long-held theoretical link between organism size-spectra and ecosystem trophic structures. We found that predator/grazer biomass and biovolume unexpectedly exceed that of primary producers at most (55%) locations, likely due to our better quantification of gelatinous organisms. Bottom- heavy ecosystems (the norm on land) appear to be rare in the ocean. Collectively, gelatinous organisms represent 30% of the total biovolume (8-9% of carbon) of marine plankton communities from tropical to polar ecosystems. Communities can be split into three extreme typologies: diatom/copepod-dominated in eutrophic blooms, rhizarian/chaetognath-dominated in oligotrophic tropical oceans, and gelatinous-dominated elsewhere. While plankton taxonomic composition changes with latitude, functional and trophic structures mostly depend on the amount of prey available for each trophic level. Given future projections of oligotrophication of marine ecosystems, our findings suggest that rhizarian and gelatinous organisms will increasingly dominate the apex position of planktonic ecosystems, leading to significant changes in the ocean’s carbon cycle.

Licence CC-BY-NC-ND
Full Text
File Pages Size Access
Preprint 43 7 MB Open access
Top of the page

How to cite 

Lombard Fabien, Guidi Lionel, Brandão Manoela C., Coelho Luis Pedro, Colin Sébastien, Dolan John Richard, Elineau Amanda, Gasol Josep M, Grondin Pierre Luc, Henry Nicolas, Ibarbalz Federico M, Jalabert Laetitia, Loreau Michel, Martini Séverine, Mériguet Zoé, Picheral Marc, Pierella Karlusich Juan José, Pepperkok Rainer, Romagnan Jean-Baptiste, Zinger Lucie, Stemmann Lars, Acinas Silvia G, Lee Karp-Boss, Boss Emmanuel, Sullivan Matthew B., de Vargas Colomban, Bowler Chris, Karsenti Eric, Gorsky Gabriel. Ubiquity of inverted ’gelatinous’ ecosystem pyramids in the global ocean. bioRxiv IN PRESS. Publisher's official version : https://doi.org/10.1101/2024.02.09.579612 , Open Access version : https://archimer.ifremer.fr/doc/00878/98996/