Ontogenetic shift or not? Different foraging trade‐offs within the meso‐ to bathypelagic fish community

Type Article
Date 2024-03
Language English
Author(s) Loutrage LizORCID1, 2, 3, Brind'Amour AnikORCID2, Chouvelon TiphaineORCID1, 4, Spitz JérômeORCID1, 3
Affiliation(s) 1 : Observatoire Pelagis UAR 3462 La Rochelle Université/CNRS La Rochelle ,France
2 : DECOD (Ecosystem Dynamics and Sustainability: From Source to Sea), Ifremer, Institut Agro, INRAE Nantes ,France
3 : Centre d'Etudes Biologiques de Chizé (CEBC) UMR 7372 La Rochelle Université/CNRS Villiers‐en‐Bois ,France
4 : Ifremer CCEM Contamination Chimique des Écosystèmes Marins Nantes,France
Source Ecology And Evolution (2045-7758) (Wiley), 2024-03 , Vol. 14 , N. 3 , P. e11129 (18p.)
DOI 10.1002/ece3.11129
Keyword(s) body size, deep pelagic, stable isotopes, trophic ecology, variance partitioning
Abstract

During ontogeny, the increase in body size forces species to make trade‐offs between their food requirements, the conditions necessary for growth and reproduction as well as the avoidance of predators. Ontogenetic changes are leading species to seek out habitats and food resources that meet their needs. To this end, ontogenetic changes in nocturnal habitat (vertical use of the water column) and in the type of food resources (based on stable isotopes of nitrogen) were investigated in 12 species of deep pelagic fish from the Bay of Biscay in the Northeast Atlantic. Our results revealed the existence of major differences in the ontogenetic strategies employed by deep pelagic fishes. Some species showed ontogenetic changes in both vertical habitat use and food resources (e.g. Jewel lanternfish (Lampanyctus crocodilus) and Atlantic soft pout (Melanostigma atlanticum)). In contrast, other species showed no ontogenetic change (e.g. Koefoed's searsid (Searsia koefoedi) and Lancet fish (Notoscopelus kroyeri)). Some species only changed food resources (e.g. Spotted lanternfish (Myctophum punctatum), Spotted barracudina (Arctozenus risso) and Stout sawpalate (Serrivomer beanii)), while others seemed to be influenced more by depth than by trophic features (e.g. Bluntsnout smooth‐head (Xenodermichthys copei) and Olfer's Hatchetfish (Argyropelecus olfersii)). These results suggest that to meet their increasing energy requirements during ontogeny, some species have adopted a strategy of shifting their food resources (larger prey or prey with a higher trophic level), while others seemed to maintain their food resources but are most likely increasing the quantity of prey ingested. As fish species can have different functional roles during their development within ecosystems, characterising ontogenetic changes in mesopelagic fish species is a crucial step to be considered in future research aimed at understanding and modelling the complexity of deep‐pelagic food webs.

Licence CC-BY
Full Text
File Pages Size Access
Publisher's official version 18 8 MB Open access
Figure S1 5 MB Open access
Figure S2 5 MB Open access
Figure S3 100 MB Open access
Top of the page