Global carbon budget 2014

Type Article
Date 2015
Language English
Author(s) Le Quere C.1, Moriarty R.1, Andrew R. M.2, Peters G. P.2, Ciais P.3, Friedlingstein P.4, Jones S. D.1, Sitch S.5, Tans P.6, Arneth A.7, Boden T. A.8, Bopp L.3, Bozec Y.9, 10, Canadell J. G.11, Chini L. P.12, Chevallier F.3, Cosca C. E.13, Harris I.14, Hoppema M.15, Houghton R. A.16, House J. I.17, Jain A. K.18, Johannessen T.19, 20, Kato E.21, 22, Keeling R. F.23, Kitidis V.24, Klein Goldewijk K.25, 26, Koven C.27, Landa C. S.19, 20, Landschuetzer P.28, Lenton A.29, Lima I. D.30, Marland G.31, Mathis J. T.13, Metzl N.32, Nojiri Y.21, Olsen A.19, 20, Ono T.33, Peng S.3, Peters W.34, Pfeil B.19, 20, Poulter B.35, Raupach M. R.36, Regnier P.37, Roedenbeck C.38, Saito S.39, Salisbury J. E.40, Schuster U.5, Schwinger J.19, 20, Seferian R.41, Segschneider J.42, Steinhoff T.43, Stocker B. D.44, 45, 46, Sutton A. J.13, 47, Takahashi T.48, Tilbrook B.49, 50, Van Der Werf G. R.51, Viovy N.3, Wang Y. -P.52, Wanninkhof R.53, Wiltshire A.54, Zeng N.55
Affiliation(s) 1 : Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England.
2 : Ctr Int Climate & Environm Res Oslo CICERO, Oslo, Norway.
3 : UVSQ, CNRS, Inst Pierre Simon Laplace, Lab Sci Climat & Environm,CEA,CE Orme Merisiers, F-91191 Gif Sur Yvette, France.
4 : Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England.
5 : Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4QE, Devon, England.
6 : NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
7 : Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm, D-82467 Garmisch Partenkirchen, Germany.
8 : Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr CDIAC, Oak Ridge, TN USA.
9 : CNRS, Equipe Chim Marine, Stn Biolog Roscoff, UMR7144, F-29680 Roscoff, France.
10 : Univ Paris 06, Univ Paris 04, Adaptat & Diversite Milieu Marin UMR7144, Stn Biol Roscoff, F-29680 Roscoff, France.
11 : CSIRO Oceans & Atmosphere Flagship, Global Carbon Project, Canberra, ACT 2601, Australia.
12 : Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
13 : NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
14 : Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England.
15 : Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27515 Bremerhaven, Germany.
16 : Woods Hole Res Ctr WHRC, Falmouth, MA 02540 USA.
17 : Univ Bristol, Dept Geog, Cabot Inst, Bristol BS8 1TH, Avon, England.
18 : Univ Illinois, Dept Atmospher Sci, Urbana, IL 61821 USA.
19 : Univ Bergen, Geophys Inst, N-5007 Bergen, Norway.
20 : Bjerknes Ctr Climate Res, N-5007 Bergen, Norway.
21 : Natl Inst Environm Studies NIES, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan.
22 : Inst Appl Energy IAE, Tokyo 1050003, Japan.
23 : Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
24 : Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England.
25 : PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands.
26 : Univ Utrecht, Utrecht, Netherlands.
27 : Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
28 : ETH, Inst Biogeochem & Pollutant Dynam, Environm Phys Grp, CH-8092 Zurich, Switzerland.
29 : CSIRO Oceans & Atmosphere Flagship, Hobart, Tas, Australia.
30 : Woods Hole Oceanog Inst WHOI, Woods Hole, MA 02543 USA.
31 : Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA.
32 : Univ Paris 06, Univ Paris 04, CNRS, IRD,MNHN,LOCEAN IPSL Lab, F-75252 Paris, France.
33 : Fisheries Res Agcy, Natl Res Inst Fisheries Sci, Kanazawa Ku, Yokohama, Kanagawa 2368648, Japan.
34 : Wageningen Univ, Environm Sci Grp, Dept Meteorol & Air Qual, NL-6700 AA Wageningen, Netherlands.
35 : Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA.
36 : Australian Natl Univ, ANU Climate Change Inst, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia.
37 : Univ Libre Bruxelles, Dept Earth & Environm Sci, B-1050 Brussels, Belgium.
38 : Max Planck Inst Biogeochem, D-07745 Jena, Germany.
39 : Japan Meteorol Agcy, Global Environm & Marine Dept, Marine Div, Chiyoda Ku, Tokyo 1008122, Japan.
40 : Univ New Hampshire, Ocean Proc Anal Lab, Durham, NH 03824 USA.
41 : CNRS, CNRM GAME, Meteo France CNRS, F-31100 Toulouse, France.
42 : Max Planck Inst Meteorol, D-20146 Hamburg, Germany.
43 : GEOMAR Helmholtz Ctr Ocean Res Kiel, D-24105 Kiel, Germany.
44 : Univ Bern, Climate & Environm Phys, Bern, Switzerland.
45 : Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland.
46 : Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ascot SL5 7PY, Berks, England.
47 : Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA.
48 : Lamont Doherty Earth Observ Columbia Univ, Palisades, NY 10964 USA.
49 : CSIRO Oceans & Atmosphere, Hobart, Tas, Australia.
50 : Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
51 : Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands.
52 : CSIRO Ocean & Atmosphere, Aspendale, Vic 3195, Australia.
53 : NOAA, AOML, Miami, FL 33149 USA.
54 : Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England.
55 : Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
Source Earth System Science Data (1866-3508) (Copernicus Gesellschaft Mbh), 2015 , Vol. 7 , N. 1 , P. 47-85
DOI 10.5194/essd-7-47-2015
WOS© Times Cited 368
Note supported by the EU FP7 through project CARBOCHANGE (264879), GEOCarbon (283080), LUC4C (GA603542), MACC-II (283576).
Abstract Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
Full Text
File Pages Size Access
Publisher's official version 39 1 MB Open access
Top of the page

How to cite 

Le Quere C., Moriarty R., Andrew R. M., Peters G. P., Ciais P., Friedlingstein P., Jones S. D., Sitch S., Tans P., Arneth A., Boden T. A., Bopp L., Bozec Y., Canadell J. G., Chini L. P., Chevallier F., Cosca C. E., Harris I., Hoppema M., Houghton R. A., House J. I., Jain A. K., Johannessen T., Kato E., Keeling R. F., Kitidis V., Klein Goldewijk K., Koven C., Landa C. S., Landschuetzer P., Lenton A., Lima I. D., Marland G., Mathis J. T., Metzl N., Nojiri Y., Olsen A., Ono T., Peng S., Peters W., Pfeil B., Poulter B., Raupach M. R., Regnier P., Roedenbeck C., Saito S., Salisbury J. E., Schuster U., Schwinger J., Seferian R., Segschneider J., Steinhoff T., Stocker B. D., Sutton A. J., Takahashi T., Tilbrook B., Van Der Werf G. R., Viovy N., Wang Y. -P., Wanninkhof R., Wiltshire A., Zeng N. (2015). Global carbon budget 2014. Earth System Science Data, 7(1), 47-85. Publisher's official version : , Open Access version :