A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake

Type Article
Date 2015-12
Language English
Author(s) Patton Jason R.1, Goldfinger Chris1, Morey Ann E.1, Ikehara Ken2, Romsos Chris1, Stoner Joseph1, Djadjadihardja Yusuf3, Udrekh 3, Sri Ardhyastuti 3, Gaffar Eddy Zulkarnaen4, Vizcaino Alexis5
Affiliation(s) 1 : Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Adm Bldg,101 SW 26th St, Corvallis, OR 97331 USA.
2 : Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan.
3 : BPPT, Jakarta 10340, Indonesia.
4 : Geotechnol LIPI Lembaga Ilmu Pengetahuan Indonesi, Bandung 40141, Indonesia.
5 : CMIMA, Unitat Tecnol Marina, CSIC, Barcelona 08003, Spain.
Source Geosphere (1553-040X) (Geological Soc Amer, Inc), 2015-12 , Vol. 11 , N. 6 , P. 2067-2129
DOI 10.1130/GES01066.1
WOS© Times Cited 48
Abstract In order to investigate the possibility of a long-term paleoseismic history from offshore sedimentary records in Sumatra, we collected 144 deep-sea sedi-ment cores in the trench and in lower slope piggyback basins of the Sumatra accretionary prism. We used multibeam bathymetry and seismic reflection data to develop an understanding of catchment basins, turbidity current pathways, and depositional styles, as well as to precisely locate our gravity cores, piston cores, Kasten cores, and multicores. We use detailed physical property data, including computed tomographic X-ray, gamma density, magnetic susceptibility, grain-size analysis, faunal analysis, and smear slides, to evaluate the turbidite stratigraphy and sedimentology at each site. We use radiocarbon age control for piggyback basin sites above the carbonate compensation depth, and use Pb-210 and Cs-137 to evaluate the timing of the most recent sedimentary deposits. Using well-log correlation methods and radiometric age control, we test for potential correlations between isolated sites in piggyback basins and the trench. We find evidence for very young surface turbidites along the northern Sumatra margin, most likely emplaced within the past few decades at the seafloor in both the 2004 and 2005 earthquake rupture zones, with no overlying hemipelagic sediment. Based on the young soupy deposits, lack of oxidation, and Pb-210 and C-14 age determinations, we interpret the uppermost turbidite in 21 cores within the 2004 rupture area to have been deposited within a few years of collection in 2007, and most likely as a result of the 2004 moment magnitude (M-w) similar to 9.2 earthquake. The likely 2004 turbidite has a distinctive stacked structure of three major fining-upward sequences observed at several basin and trench sites, similar to the pattern of moment release in the 2004 earthquake. We observe rapid die out of the 2004 and 2005 deposits with distance from the slip zones, from local sources of sediment supply, and in the segment boundary between the slip zones. Many individual turbidites show strong similarities between isolated sites, as well as having similar emplacement times. Based upon radiocarbon age control and lithostratigraphic correlations between isolated basin and trench core sites, we interpret that 43 turbidites can be linked spatially over a distance of similar to 230 km within the southern portion of the 2004 rupture zone. Sampling at deep-water sites isolated from terrestrial and shallow-water sediment sources, as well as potential storm or tsunami wave triggers, limits potential mechanisms for initiating turbidity currents to plate boundary, crustal, or slab earthquakes. Other potential triggers, such as tectonic oversteepening, random self-failures, gas hydrate destabilization, are unlikely to be correlative between any two isolated sites. The most probable explanation for the similarity of timing, turbidite sequences, and individual turbidite structure in isolated basin and trench stratigraphic sequences is a seismogenic origin. The mean emplacement time for turbidites (likely triggered by Great earthquakes, magni-tude > similar to 8) in the 2004 rupture region for the past 6.6 +/- 0.14 k.y. is 160 yr for 43 turbidites. The ages of 8 of the 10 uppermost turbidite deposits, spanning the past similar to 1500 yr, are largely consistent with the terrestrial paleoseismic and/or tsunami records in Thailand, Sumatra, India, and the Anda-man Islands, suggesting either coincidence or a common origin. The mean interseismic time from the turbidite record for this same period is 170 yr, comparable to the similar to 210 yr recurrence for regional tsunami. The turbidite record, at 180 yr (6 events), compares reasonably well to the average for all events on northern Simeulue of 220 yr, and is identical to the tsunami interval of 180 yr for the same time period (6 events). Of the 43 correlated turbidites in the 2004 earthquake region, 13 are well correlated in our cores along strike lengths of 150 km or greater, and satisfy criteria for robustness; 24 turbidites correlated along a shorter strike distance may represent other plate boundary earthquakes of shorter spatial extent and may include turbidite beds sourced from crustal and slab earthquakes.
Full Text
File Pages Size Access
Supplemental File S1 1 15 MB Open access
Supplemental File S10 1 1 MB Open access
Supplemental File S2 16 174 KB Open access
Supplemental File S3 1 15 MB Open access
Supplemental File S4 1 2 MB Open access
Supplemental File S5 2 31 KB Open access
Supplemental File S6 8 5 MB Open access
Supplemental File S7 1 134 KB Open access
Supplemental File S8 2 148 KB Open access
Supplemental File S9 2 688 KB Open access
Publisher's official version 65 15 MB Open access
Top of the page

How to cite 

Patton Jason R., Goldfinger Chris, Morey Ann E., Ikehara Ken, Romsos Chris, Stoner Joseph, Djadjadihardja Yusuf, Udrekh, Sri Ardhyastuti, Gaffar Eddy Zulkarnaen, Vizcaino Alexis (2015). A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake. Geosphere, 11(6), 2067-2129. Publisher's official version : https://doi.org/10.1130/GES01066.1 , Open Access version : https://archimer.ifremer.fr/doc/00351/46229/