Global Carbon Budget 2020

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFOS) are based on energy statistics and cement production data, while emissions from land-use change ( ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN) and terrestrial CO2 sink ( S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2010-2019), E-FOS was 9.6 +/- 0.5 GtC yr(-1) excluding the cement carbonation sink (9.4 +/- 0.5 GtC yr(-1) when the cement carbonation sink is included), and ELUC was 1.6 +/- 0.7 GtC yr(-1). For the same decade, GATM was 5.1 +/- 0.02 GtC yr(-1) (2.4 +/- 0.01 ppm yr(-1)), SOCEAN 2.5 +/- 0.6 GtC yr(-1) and SLAND 3.4 +/- 0.9 GtC yr(-1), with a budget imbalance BIM of 0.1 GtC yr(-1) indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1% with fossil emissions increasing to 9.9 +/- 0.5 GtC yr(-1) excluding the cement carbonation sink (9.7 +/- 0.5 GtC yr(-1) when cement carbonation sink is included), and ELUC was 1.8 +/- 0.7 GtC yr(-1), for total anthropogenic CO2 emissions of 11.5 +/- 0.9 GtC yr 1 (42.2 +/- 3.3 GtCO(2)). Also for 2019, GATM was 5.4 +/- 0.2 GtC yr 1 (2.5 +/- 0.1 ppm yr 1), SOCEAN was 2.6 +/- 0.6 GtC yr 1, and SLAND was 3.1 +/- 1.2 GtC yr(-1), with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 +/- 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about 7% (median estimate) based on individual estimates from four studies of 6 %, 7 %, 7% ( 3% to 11 %), and 13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-2019, but discrepancies of up to 1 GtC yr 1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).

Full Text

FilePagesSizeAccess
Publisher's official version
728 Mo
Supplement
-466 Ko
Preprint
3168 Ko
How to cite
Friedlingstein Pierre, O'sullivan Michael, Jones Matthew W., Andrew Robbie M., Hauck Judith, Olsen Are, Peters Glen P., Peters Wouter, Pongratz Julia, Sitch Stephen, Le Quere Corinne, Canadell Josep G., Ciais Philippe, Jackson Robert B., Alin Simone, Aragao Luiz E. O. C., Arneth Almut, Arora Vivek, Bates Nicholas R., Becker Meike, Benoit-Cattin Alice, Bittig Henry C., Bopp Laurent, Bultan Selma, Chandra Naveen, Chevallier Frederic, Chini Louise P., Evans Wiley, Florentie Liesbeth, Forster Piers M., Gasser Thomas, Gehlen Marion, Gilfillan Dennis, Gkritzalis Thanos, Gregor Luke, Gruber Nicolas, Harris Ian, Hartung Kerstin, Haverd Vanessa, Houghton Richard A., Ilyina Tatiana, Jain Atul K., Joetzjer Emilie, Kadono Koji, Kato Etsushi, Kitidis Vassilis, Korsbakken Jan Ivar, Landschutzer Peter, Lefevre Nathalie, Lenton Andrew, Lienert Sebastian, Liu Zhu, Lombardozzi Danica, Marland Gregg, Metzl Nicolas, Munro David R., Nabel Julia E. M. S., Nakaoka Shin-Ichiro, Niwa Yosuke, O'brien Kevin, Ono Tsuneo, Palmer Paul I., Pierrot Denis, Poulter Benjamin, Resplandy Laure, Robertson Eddy, Rodenbeck Christian, Schwinger Jorg, Seferian Roland, Skjelvan Ingunn, Smith Adam J. P., Sutton Adrienne J., Tanhua Toste, Tans Pieter P., Tian Hanqin, Tilbrook Bronte, van der Werf Guido, Vuichard Nicolas, Walker Anthony P., Wanninkhof Rik, Watson Andrew J., Willis David, Wiltshire Andrew J., Yuan Wenping, Yue Xu, Zaehle Sonke (2020). Global Carbon Budget 2020. Earth System Science Data. 12 (4). 3269-3340. https://doi.org/10.5194/essd-12-3269-2020, https://archimer.ifremer.fr/doc/00677/78860/

Copy this text